Edge covering with budget constrains
نویسندگان
چکیده
We study two related problems: the Maximum weightm′-edge cover (MWEC ) problem and the Fixed cost minimum edge cover (FCEC ) problem. In the MWEC problem, we are given an undirected simple graph G = (V,E) with integral vertex weights. The goal is to select a set U ⊆ V of maximum weight so that the number of edges with at least one endpoint in U is at most m′. Goldschmidt and Hochbaum [7] show that the problem is NP-hard and they give a 3-approximation algorithm for the problem. We present an approximation algorithm that achieves a guarantee of 2, thereby improving the bound of 3 [7]. In the FCEC problem, we are given a vertex weighted graph, a bound k, and our goal is to find a subset of vertices U of total weight at least k such that the number of edges with at least one edges in in U is minimized. A 2(1 + )-approximation for the problem follows from the work of Carnes and Shmoys [4]. We improve the approximation ratio by giving a 2-approximation algorithm for the problem. Can we get better results using methods based on linear programming? We take a first step and show that the natural LP for FCEC has an ∗Department of Computer Science, Rutgers University, Camden, NJ 08102. Partially supported by NSF grant number 1218620 . E-mail: [email protected] †Department of Computer Science, Rutgers University, Camden, NJ 08102. Partially supported by NSF grant number 1218620. E-mail: [email protected].
منابع مشابه
ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملThe Ly - edge paradox and the need for obscured QSOs
Based on the most recent QSO ultraviolet spectra, the covering factor of the clouds of the Broad Line Region (BLR) is about 30%, or larger. This value would imply that in at least 30% of the QSOs our line of sight crosses one, or more, BLR clouds and, in the latter case, the UV spectrum should show a sharp Ly-edge in absorption. This Ly-edge in absorption is never observed. This paradox is solv...
متن کاملParameterized Complexity of Edge Interdiction Problems
We study the parameterized complexity of graph interdiction problems. For an optimization problem on graphs, one can formulate an interdiction problem as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In edge interdiction problems, every edge of the input graph has an interdiction cost associated with it and the inter...
متن کاملPacking Interdiction and Partial Covering Problems
In the Packing Interdiction problem we are given a packing LP together with a separate interdiction cost for each LP variable and a global interdiction budget. Our goal is to harm the LP: which variables should we forbid the LP from using (subject to forbidding variables of total interdiction cost at most the budget) in order to minimize the value of the resulting LP? Interdiction problems on g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.0713 شماره
صفحات -
تاریخ انتشار 2013